The near Radon-nikodym Property in Lebesgue-bochner Function Spaces

نویسنده

  • NARCISSE RANDRIANANTOANINA
چکیده

Let X be a Banach space and (Ω,Σ, λ) be a finite measure space, 1 ≤ p < ∞. It is shown that L(λ,X) has the Near Radon-Nikodym property if and only if X has it. Similarly if E is a Köthe function space that does not contain a copy of c0, then E(X) has the Near Radon-Nikodym property if and only if X does.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Compact Variation, Compact Subdifferentiability and Indefinite Bochner Integral

The notions of compact convex variation and compact convex subdifferential for the mappings from a segment into a locally convex space (LCS) are studied. In the case of an arbitrary complete LCS, each indefinite Bochner integral has compact variation and each strongly absolutely continuous and compact subdifferentiable a.e. mapping is an indefinite Bochner integral. 0. Introduction and prelimin...

متن کامل

Convergent Martingales of Operators and the Radon Nikodým Property in Banach Spaces

We extend Troitsky’s ideas on measure-free martingales on Banach lattices to martingales of operators acting between a Banach lattice and a Banach space. We prove that each norm bounded martingale of cone absolutely summing (c.a.s.) operators (also known as 1-concave operators), from a Banach lattice E to a Banach space Y , can be generated by a single c.a.s. operator. As a consequence, we obta...

متن کامل

Characterization of the Radon-nikodym Property in Terms of Inverse Limits

In this paper we clarify the relation between inverse systems, the Radon-Nikodym property, the Asymptotic Norming Property of James-Ho [JH81], and the GFDA spaces introduced in [CK06].

متن کامل

Differentiability of Lipschitz Maps from Metric Measure Spaces to Banach Spaces with the Radon Nikodym Property

In this paper we prove the differentiability of Lipschitz maps X → V , where X is a complete metric measure space satisfying a doubling condition and a Poincaré inequality, and V denotes a Banach space with the Radon Nikodym Property (RNP). The proof depends on a new characterization of the differentiable structure on such metric measure spaces, in terms of directional derivatives in the direct...

متن کامل

Representation of Operators Defined on the Space of Bochner Integrable Functions

The representation of linear operators, on the Banach space of Bochner integrable functions, has been the object of much study for the past fifty years. Dunford and Pettis began this investigation in 1940 with the representation of weakly compact and norm compact operators on L1(R) by a Bochner integral, see [6,8]. Andrews has extended their study to the case of the space L1(E), of E-valued, Bo...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997